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 call electron_scf
      do iter = 1, niter
         call c_bands    >   C_BANDS        
         call sum_band   >   SUM_BAND
         call mix_rho
         call v_of_rho   
      end do iter
 
      

ELECTRONS 



 call read_input_file   (input.f90)

 call run_pwscf
 
      call setup         > SETUP
      call init_run      > INIT_RUN
      do 
         call electrons  > ELECTRONS
         call forces
         call stress
         call move_ions
         call update_pot
         call hinit1  
      end do

PWSCF 



 defines grid and other dimensions, no system 
 specific calculations yet

 
 call pre_init
 call allocate_fft
 call ggen
 call allocate_nlpot
 call allocate_paw_integrals
 call paw_one_center
 call allocate_locpot
 call allocate wfc
 call openfile
 call hinit0
 call potinit
 call newd
 call wfctinit

 
      

SETUP 

INIT_RUN 



 call electron_scf
      do iter = 1, niter
         call c_bands    >   C_BANDS        
         call sum_band   >   SUM_BAND
         call mix_rho
         call v_of_rho   
      end do iter
 
      

ELECTRONS 



 do ik = 1, nks 
    call get_buffer    (evc)
    call init_us_2     (vkb)        
    call diag_bands   >   DIAG_BANDS
    call save_buffer
 end do ik
 
  

   DAVIDSON (isolve=0)
      hdiag = g2 + vloc_avg + Vnl_avg
      call cegterg or pcegterg

   CG (isolve=1)
      hdiag = 1 + g2 + sqrt(1+(g21)**2)
      call rotate_wfc
      call ccgdiagg         
   

C_BANDS 

DIAG_BANDS 



Step 4 : diagonalization



  

Diagonalization of HKS is a major step in the scf solution of any 
system.

In pw.x two methods are implemented:

●Davidson diagonalization
-efficient in terms of number of  Hpsi required 
-memory intensive: requires a work space up to 
      (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to 
      david*nbnd x david*nbnd 
 where david is by default 4, but can be reduced to 2

●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically 
 sequential and not efficient for large systems. 



Davidson Diagoalization

●Given trial eigenpairs:
●Eigenpairs of  the reduced Hamiltonian

●Diagonalize the small 2nbnd x 2nbnd reduced 
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve the solution
→ 3nbnd x 3nbnd → 4nbnd x 4nbnd … → nbnd x nbnd

●Build the correction vectors  

●Build an extended reduced Hamiltonian 



  

●Davidson diagonalization
-efficient in terms of number of  Hpsi required 
-memory intensive: requires a work space up to 
      (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to 
      david*nbnd x david*nbnd 
 where david is by default 4, but can be reduced to 2

●routines

- regterg , cegterg  real/cmplx  eigen iterative generalized

- h_psi, s_psi, g_psi

- rdiaghg, cdiaghg  real/cmplx diagonalization H generalized



Conjugate Gradient

●For each band, given a trial eigenpair:

●Minimize the single particle energy 

by (pre-conditioned) CG method
                
subject to the constraints

…. see attached documents for more details  

●Repeat for next band until completed  



  

●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically 
 sequential and not efficient for large systems. 

●routines

- rcgdiagg , ccgdiagg  real/cmplx CG diagonalization generalized

- h_1psi, s_1psi

   * preconditioning
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Diagonalization of HKS is a major step in the scf solution of any 
system.

In pw.x in QE two methods are implemented:

●Davidson diagonalization
-efficient in terms of number of  Hpsi required 
-memory intensive: requires a work space up to 
      (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to 
      david*nbnd x david*nbnd 
 where david is by default 4, but can be reduced to 2

●Conjugate Gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically 
 sequential and not efficient for large systems. 



The two main iterative eigensolvers employed in the pw.x code of the 
Quantum ESPRESSO distribution were completely disentangled from 
the rest of the code. The solvers make use of the Linear Algebra 
domain-specific library LAXlib, developed within the MaX CoE, which is 
interfaced with ELPA and ScalaPack. 

Solvers exploit MPI parallelization and in addition to basis-set 
component distribution, a parallelization over target states is possible, 
as well as a specific parallelization for the dense linear algebra. 

Generic k-point as well as Gamma specific versions of the solvers are 
included. The Reverse Communication Interface (RCI) paradigm, 
allowing for a complete abstraction from the basis type and the 
interface used to perform the matrix-vector operations, has also been 
implemented for one of the solvers.

A toy code implementing the Cohen-Bergstresser empirical 
pseudopotential method is included to exemplify the use of the solvers 
and allow a test of their functionalities. It uses FFTXlib from MaX CoE.

The software developed during the Workshop is hosted by the e-cam 
gitlab server in Lausanne as a public sub-project of the ESL initiative     
                 (gitlab.e-cam2020/esl/ESLW_Drivers). 
 



https://gitlab.e-cam2020.eu/esl/ESLW_Drivers

CB_toy_code/Doc             so far empty
                    /examples     contains inputs and ref. outputs
                    /src               contains simple code mains
FFTXlib                            fft library used by CB_toy_code
KS_Solvers/CG                 band-by-band CG 
                  /Davidson       Davidson iterative diagonalization
                  /Davidson_RCI  Reverse Comm Interf version
                  /PPCG            PPCG diagonalization
LAXlib                              linear algebra library (int w ELPA) 
UtilXlib                            basic utilities (error,timinig,para)
archive                            library archive (lapack source)
clib                                  c timing routine 
include
install                              configure, makedeps       
Makefile
configure

https://gitlab.e-cam2020.eu/esl/ESLW_Drivers


  

●Davidson diagonalization
-efficient in terms of number of  Hpsi required 
-memory intensive: requires a work space up to 
      (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to 
      david*nbnd x david*nbnd 
 where david is by default 4, but can be reduced to 2

●routines

- regterg , cegterg  real/cmplx  eigen iterative generalized

- rdiaghg, cdiaghg  real/cmplx diagonalization H generalized

- h_psi, s_psi, g_psi  code specific



  

●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically 
 sequential and not efficient for large systems. 

●routines

- rcgdiagg , ccgdiagg  real/cmplx CG diagonalization generalized

- rotate_wfc_gamma, rotate_wfc_k        real/cmplx initial diag

- h_1psi, s_1psi            code specific

   * preconditioning



PPCG – Projected Preconditioned Conjugate Gradient
E. Vecharynski, C. Yang, J.E. Pask,   J. Comp.Phys. 290,73 (2015) 

each band (or small group of bands) is updated by diagonalizing
a small 3*blksize x 3*blksize matrix built from the current X,
the orthogonal residual and the orthogonal conjugate direction



  

● PPCG 

●-memory friendly: bands are dealt with a small block at a time.
●-global calls to h_psi give opportunities for band parallelization.
●-each block can be dealt with independently (parallelization)
●-most operations on arrays use efficient BLAS3 calls (DGEMM)

●routines

- ppcg,      real PPCG,  cmplx version not yet available
 
- rotate_wfc_gamma,   real initial diag (the same as CG)

- h_psi, s_psi                code specific

   * preconditioning











   Parallel Orbital update method
  

 and
 some thoughts about 

-bgrp parallelization 
-ortho parallelization
-task parallelization

  
  in pw.x



  arXiv:1510.07230v1 [math.NA] 25/10/2015

  arXiv:1405.0260v2 [math.NA] 20/11/2014

Some recent work on an alternative iterative methods



  arXiv:1405.0260v2 [math.NA] 20/11/2014

ParO in a nutshell



ParO as I understand it

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian

●Diagonalize the small nbnd x nbnd reduced Hamiltonian 
to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian 



A variant of ParO method

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both 

●Diagonalize the small 2nbnd x 2nbnd reduced 
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian 



A variant of ParO method  (2)

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both 

●Diagonalize the small 2nbnd x 2nbnd reduced 
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian



A variant of ParO method (3)

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from 

●Diagonalize the small nbnd x nbnd reduced Hamiltonian 
to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian



Memory requirements for ParO method

●Memory required is nbnd * npwx + [nbnd*npwx] in 
the original ParO method or when                are used.

●Memory required is 3 * nbnd * npwx + [2*nbnd*npwx] 
if both                             are used.

●Could be possible to reduce this memory and/or the 
number of h_psi involved by playing with the algorithm.

Comparison with the other methods

●NOT competitive with Davidson at the moment

●Timing and number of h_psi calls similar to cg on a 
single bgrp basis. It scales !



216 Si atoms in a SC cell : Timing 

Total CPU time



216 Si atoms in a SC cell : Timing 

Total CPU time

Total CPU time h_psi



Not only Silicon: BaTiO3  320 atms, 2560 el  

Total CPU time



Not only Silicon: BaTiO3  320 atms, 2560 el  

Total CPU time h_psi

Total CPU time



Comparison with the other methods

●NOT competitive with Davidson at the moment

●Timing and number of h_psi calls similar to CG on a 
single bgrp basis. It scales well with bgrp parallelization!

                    TO DO LIST

●Profiling of a few relevant test cases

●Extend band parallelization to other parts 

●Understand why h_psi is so much more efficient in the 
Davidson method.

●See if number of h_psi can be reduced



●bgrp parallelization
●We should use bgrp parallelization more extensively    
distributing work w/o distributing data (we have R&G 
parallelization for that) so as to scale up to more 
processors.
● We can distribute different loops in different routines 
(nats, nkb, ngm, nrxx, …). Only local effects: incremental!
●A careful profiling of the code is required.
●ortho/diag parallelization
●It should be a sub comm of the pool comm (k-points) 
not of the bgrp comm. 
●Does it give any gain ? Except for some memory 
reduction I saw no gain (w/o scalapack).
●task parallelization
●Only needed for very large/anisotropic systems, intrinsically 
requiring many more processors than planes. 
●Is not a method to scale up the number of processors for a 
“small” calculation (should use bgrp parallelization for that).
●Should be activated also when  m < dffts%nogrp
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In February 2017 Massimiliano Fatica (nvidia) came to Trieste
to present CUDA Fortran and their GPU work on QE.

A number of QE developers were present as well as  
Anoop Chandran (SISSA/ICTP MHPC student supported by QEF) 

Interest from nvidia to keep supporting development in QE
has been confirmed recently.

success has many fathers, failure is an orphan
                            Tacitus Agricola (98), Galeazzo Ciano (1942), JFK (1961), ...



CUDA Fortran is basically Fortran



CUDA Fortran is basically Fortran



CUDA Fortran is basically Fortran

It is possible, with some limited effort, to integrate GPU-aware 
sections in a single source. Similarly to MPI/OpenMP cases.
Encapsulation/modularization of the more architecture-specific
bits will help readability and maintainability.  



  

Diagonalization of HKS is a major step in the scf solution of any 
system.

In pw.x in QE two methods are implemented:

●Davidson diagonalization
-efficient in terms of number of  Hpsi required 
-memory intensive: requires a work space up to 
      (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to 
      david*nbnd x david*nbnd 
 where david is by default 4, but can be reduced to 2

●Conjugate Gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically 
 sequential and not efficient for large systems. 







Adding GPUs:  a range of different machines

Ulysses @ SISSA       16 nodes: 20 cores - 2 Gpus
Drake @ CNR              1 nodes: 16 cores - 4 Gpus (k80)
DAVIDE @ CINECA   45 nodes: 16 cores - 4 Gpus (p100)

comparison depends on the selected architecture. 
   
a reliable performance modeling would be very useful
to make rational choices when buying hardware for and 
allocating resources to a user community.

so far the focus of the effort has been more on enabling
the use of the new architecture rather than optimizing 
performance. 

-Davidson/CG solvers, more recently Force computation





#MPI should be = #GPU => OMP parallelism on CPU is important
                                          as core/gpu ratio may be significant



CG uses devices more efficiently
Time-to-solution favours Davidson
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