
Stefano de Gironcoli
Scuola Internazionale Superiore di Studi Avanzati

Trieste-Italy

Electronic Structure:

from BlackBoard

to Source Code

PWSCF

and

diagonalization

 call electron_scf
 do iter = 1, niter
 call c_bands > C_BANDS
 call sum_band > SUM_BAND
 call mix_rho
 call v_of_rho
 end do iter

ELECTRONS

 call read_input_file (input.f90)

 call run_pwscf

 call setup > SETUP
 call init_run > INIT_RUN
 do
 call electrons > ELECTRONS
 call forces
 call stress
 call move_ions
 call update_pot
 call hinit1
 end do

PWSCF

 defines grid and other dimensions, no system
 specific calculations yet

 call pre_init
 call allocate_fft
 call ggen
 call allocate_nlpot
 call allocate_paw_integrals
 call paw_one_center
 call allocate_locpot
 call allocate wfc
 call openfile
 call hinit0
 call potinit
 call newd
 call wfctinit

SETUP

INIT_RUN

 call electron_scf
 do iter = 1, niter
 call c_bands > C_BANDS
 call sum_band > SUM_BAND
 call mix_rho
 call v_of_rho
 end do iter

ELECTRONS

 do ik = 1, nks
 call get_buffer (evc)
 call init_us_2 (vkb)
 call diag_bands > DIAG_BANDS
 call save_buffer
 end do ik

 DAVIDSON (isolve=0)
 hdiag = g2 + vloc_avg + Vnl_avg
 call cegterg or pcegterg

 CG (isolve=1)
 hdiag = 1 + g2 + sqrt(1+(g21)**2)
 call rotate_wfc
 call ccgdiagg

C_BANDS

DIAG_BANDS

Step 4 : diagonalization

Diagonalization of HKS is a major step in the scf solution of any
system.

In pw.x two methods are implemented:

●Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
 (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to
 david*nbnd x david*nbnd
 where david is by default 4, but can be reduced to 2

●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically
 sequential and not efficient for large systems.

Davidson Diagoalization

●Given trial eigenpairs:
●Eigenpairs of the reduced Hamiltonian

●Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve the solution
→ 3nbnd x 3nbnd → 4nbnd x 4nbnd … → nbnd x nbnd

●Build the correction vectors

●Build an extended reduced Hamiltonian

●Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
 (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to
 david*nbnd x david*nbnd
 where david is by default 4, but can be reduced to 2

●routines

- regterg , cegterg real/cmplx eigen iterative generalized

- h_psi, s_psi, g_psi

- rdiaghg, cdiaghg real/cmplx diagonalization H generalized

Conjugate Gradient

●For each band, given a trial eigenpair:

●Minimize the single particle energy

by (pre-conditioned) CG method

subject to the constraints

…. see attached documents for more details

●Repeat for next band until completed

●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically
 sequential and not efficient for large systems.

●routines

- rcgdiagg , ccgdiagg real/cmplx CG diagonalization generalized

- h_1psi, s_1psi

 * preconditioning

Stefano de Gironcoli
Scuola Internazionale Superiore di Studi Avanzati

Trieste-Italy

Making optimized codes
available to the community and

exploit novel architectures:

the QE experience

ESLW_Drivers

10-21 July 2017

 Electronic Structure Library Workshop:
 a cecam initiative predating e-cam

Volker Blum - ELSI

Viktor Yu - ELSI

William Huhn - ELSI

David Lopez - Siesta

Yann Pouillon - Abinit

Micael Oliveira – Octopus & Abinit

Fabiano Corsetti – Siesta & Onetep

Paolo Giannozzi – QE

Anoop Chandran - QE

Pietro Delugas - QE

Ivan Carnimeo - QE

Emine Kucukbenli - QE

Layla Martin-Samos - QE

Stefano de Gironcoli - QE

Diagonalization of HKS is a major step in the scf solution of any
system.

In pw.x in QE two methods are implemented:

●Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
 (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to
 david*nbnd x david*nbnd
 where david is by default 4, but can be reduced to 2

●Conjugate Gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically
 sequential and not efficient for large systems.

The two main iterative eigensolvers employed in the pw.x code of the
Quantum ESPRESSO distribution were completely disentangled from
the rest of the code. The solvers make use of the Linear Algebra
domain-specific library LAXlib, developed within the MaX CoE, which is
interfaced with ELPA and ScalaPack.

Solvers exploit MPI parallelization and in addition to basis-set
component distribution, a parallelization over target states is possible,
as well as a specific parallelization for the dense linear algebra.

Generic k-point as well as Gamma specific versions of the solvers are
included. The Reverse Communication Interface (RCI) paradigm,
allowing for a complete abstraction from the basis type and the
interface used to perform the matrix-vector operations, has also been
implemented for one of the solvers.

A toy code implementing the Cohen-Bergstresser empirical
pseudopotential method is included to exemplify the use of the solvers
and allow a test of their functionalities. It uses FFTXlib from MaX CoE.

The software developed during the Workshop is hosted by the e-cam
gitlab server in Lausanne as a public sub-project of the ESL initiative
 (gitlab.e-cam2020/esl/ESLW_Drivers).

https://gitlab.e-cam2020.eu/esl/ESLW_Drivers

CB_toy_code/Doc so far empty
 /examples contains inputs and ref. outputs
 /src contains simple code mains
FFTXlib fft library used by CB_toy_code
KS_Solvers/CG band-by-band CG
 /Davidson Davidson iterative diagonalization
 /Davidson_RCI Reverse Comm Interf version
 /PPCG PPCG diagonalization
LAXlib linear algebra library (int w ELPA)
UtilXlib basic utilities (error,timinig,para)
archive library archive (lapack source)
clib c timing routine
include
install configure, makedeps
Makefile
configure

https://gitlab.e-cam2020.eu/esl/ESLW_Drivers

●Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
 (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to
 david*nbnd x david*nbnd
 where david is by default 4, but can be reduced to 2

●routines

- regterg , cegterg real/cmplx eigen iterative generalized

- rdiaghg, cdiaghg real/cmplx diagonalization H generalized

- h_psi, s_psi, g_psi code specific

●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically
 sequential and not efficient for large systems.

●routines

- rcgdiagg , ccgdiagg real/cmplx CG diagonalization generalized

- rotate_wfc_gamma, rotate_wfc_k real/cmplx initial diag

- h_1psi, s_1psi code specific

 * preconditioning

PPCG – Projected Preconditioned Conjugate Gradient
E. Vecharynski, C. Yang, J.E. Pask, J. Comp.Phys. 290,73 (2015)

each band (or small group of bands) is updated by diagonalizing
a small 3*blksize x 3*blksize matrix built from the current X,
the orthogonal residual and the orthogonal conjugate direction

● PPCG

●-memory friendly: bands are dealt with a small block at a time.
●-global calls to h_psi give opportunities for band parallelization.
●-each block can be dealt with independently (parallelization)
●-most operations on arrays use efficient BLAS3 calls (DGEMM)

●routines

- ppcg, real PPCG, cmplx version not yet available

- rotate_wfc_gamma, real initial diag (the same as CG)

- h_psi, s_psi code specific

 * preconditioning

 Parallel Orbital update method

 and
 some thoughts about

-bgrp parallelization
-ortho parallelization
-task parallelization

 in pw.x

 arXiv:1510.07230v1 [math.NA] 25/10/2015

 arXiv:1405.0260v2 [math.NA] 20/11/2014

Some recent work on an alternative iterative methods

 arXiv:1405.0260v2 [math.NA] 20/11/2014

ParO in a nutshell

ParO as I understand it

●Solve in parallel the nbnd linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian

●Diagonalize the small nbnd x nbnd reduced Hamiltonian
to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at
 fixed Hamiltonian

A variant of ParO method

●Solve in parallel the nbnd linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both

●Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at
 fixed Hamiltonian

A variant of ParO method (2)

●Solve in parallel the nbnd linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both

●Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at
 fixed Hamiltonian

A variant of ParO method (3)

●Solve in parallel the nbnd linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from

●Diagonalize the small nbnd x nbnd reduced Hamiltonian
to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at
 fixed Hamiltonian

Memory requirements for ParO method

●Memory required is nbnd * npwx + [nbnd*npwx] in
the original ParO method or when are used.

●Memory required is 3 * nbnd * npwx + [2*nbnd*npwx]
if both are used.

●Could be possible to reduce this memory and/or the
number of h_psi involved by playing with the algorithm.

Comparison with the other methods

●NOT competitive with Davidson at the moment

●Timing and number of h_psi calls similar to cg on a
single bgrp basis. It scales !

216 Si atoms in a SC cell : Timing

Total CPU time

216 Si atoms in a SC cell : Timing

Total CPU time

Total CPU time h_psi

Not only Silicon: BaTiO3 320 atms, 2560 el

Total CPU time

Not only Silicon: BaTiO3 320 atms, 2560 el

Total CPU time h_psi

Total CPU time

Comparison with the other methods

●NOT competitive with Davidson at the moment

●Timing and number of h_psi calls similar to CG on a
single bgrp basis. It scales well with bgrp parallelization!

 TO DO LIST

●Profiling of a few relevant test cases

●Extend band parallelization to other parts

●Understand why h_psi is so much more efficient in the
Davidson method.

●See if number of h_psi can be reduced

●bgrp parallelization
●We should use bgrp parallelization more extensively
distributing work w/o distributing data (we have R&G
parallelization for that) so as to scale up to more
processors.
● We can distribute different loops in different routines
(nats, nkb, ngm, nrxx, …). Only local effects: incremental!
●A careful profiling of the code is required.
●ortho/diag parallelization
●It should be a sub comm of the pool comm (k-points)
not of the bgrp comm.
●Does it give any gain ? Except for some memory
reduction I saw no gain (w/o scalapack).
●task parallelization
●Only needed for very large/anisotropic systems, intrinsically
requiring many more processors than planes.
●Is not a method to scale up the number of processors for a
“small” calculation (should use bgrp parallelization for that).
●Should be activated also when m < dffts%nogrp

Stefano de Gironcoli
Scuola Internazionale Superiore di Studi Avanzati

Trieste-Italy

Porting MaX community codes
to novel architectures

using CUDA Fortran:

the QE experience

In February 2017 Massimiliano Fatica (nvidia) came to Trieste
to present CUDA Fortran and their GPU work on QE.

A number of QE developers were present as well as
Anoop Chandran (SISSA/ICTP MHPC student supported by QEF)

Interest from nvidia to keep supporting development in QE
has been confirmed recently.

success has many fathers, failure is an orphan
 Tacitus Agricola (98), Galeazzo Ciano (1942), JFK (1961), ...

CUDA Fortran is basically Fortran

CUDA Fortran is basically Fortran

CUDA Fortran is basically Fortran

It is possible, with some limited effort, to integrate GPU-aware
sections in a single source. Similarly to MPI/OpenMP cases.
Encapsulation/modularization of the more architecture-specific
bits will help readability and maintainability.

Diagonalization of HKS is a major step in the scf solution of any
system.

In pw.x in QE two methods are implemented:

●Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
 (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to
 david*nbnd x david*nbnd
 where david is by default 4, but can be reduced to 2

●Conjugate Gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically
 sequential and not efficient for large systems.

Adding GPUs: a range of different machines

Ulysses @ SISSA 16 nodes: 20 cores - 2 Gpus
Drake @ CNR 1 nodes: 16 cores - 4 Gpus (k80)
DAVIDE @ CINECA 45 nodes: 16 cores - 4 Gpus (p100)

comparison depends on the selected architecture.

a reliable performance modeling would be very useful
to make rational choices when buying hardware for and
allocating resources to a user community.

so far the focus of the effort has been more on enabling
the use of the new architecture rather than optimizing
performance.

-Davidson/CG solvers, more recently Force computation

#MPI should be = #GPU => OMP parallelism on CPU is important
 as core/gpu ratio may be significant

CG uses devices more efficiently
Time-to-solution favours Davidson

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

